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Abstract . Terahertz (THz) detector work at room temperature could greatly expand the application of THz science

and technology. Ultra-thin ( 10pm) lithium tantalate crystal (LiTaO, ) material was used as sensitive layer of the

detector. The responsivity could reach up to 8. 38 x 10'V/W and the noise equivalent power ( NEP) could be as

low as 1.26 x10™"°W at 20Hz operating frequency by laser radiation source at 2. 52 THz. Furthermore, this pro-

cessing method to fabricate the ultra-thin LiTaO, crystal material could potentially provide a feasible approach for e-

ven higher response terahertz detectors.
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Introduction

Terahertz ( THz) wave is an electromagnetic wave
located between microwave and infrared regions of the
spectrum spanning from about 0. 01mm to 3mm (0. 1 ~30
THz)'''. The terahertz region of electromagnetic spec-
trum is often regarded as the final unexplored area of
spectrum and presents a challenge for both electronic and
photonic technologies'*’. Due to its unique properties,
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such as low energy, high penetration for some materials
and characteristic absorption by large polar molecules,
THz detection and imaging technology has huge potential
for applying in a variety of fields like information and
communication technology ( ICT), biology and medical
science, radar, electronic warfare, electromagnetic
weapons , non-destructive evaluation, homeland security,
quality control of food and agricultural products, globe
envir(Enn]lent monitoring, hidden weapons detection, and
49
soon 7.
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THz detectors are playing a key role in wide range
of these applications''*'*'. The THz detectors can be used
for passive or active imaging[ls]. Most THz detectors for
passive imaging application are highly complex and re-
quire extreme cooling working condition"'®. For THz im-
aging application, it is necessary to develop a compact
and portable room temperature terahertz detector. Pyroe-
lectric detectors are excellent candidates for THz detec-
tion operating at room temperature. The detectors utilize
permanently poled ferroelectric crystals, which generate
a charge as the crystal heated up by absorbing incident
radiation. The pyroelectric material of lithium tantalate
(LiTaO,) has been successfully used in infrared region
detection and shows great potentials in the direct detec-
tion detectors''"'. However using LiTaO, material to fab-
ricate THz thermal detector is seldom reported.

1 Experimental results

The typical pyroelectric terahertz detector is struc-
tured with LiTaO, material in the central layer between
two metal electrodes. Lithiumtantalate(LiTaO,) presents
unique electro-optical, acoustic, piezoelectric, pyroelec-
tric and non-linear optical properties' %' | especially the
z-cut single crystal LiTaO; shows more advantages as a
new type of optical material than other traditional optical
substrate materials, such as large pyroelectric coeffi-
cient, small dielectric constant, high curie temperature
and uniformity of crystallinity'*?’. The two steps in the
fabrication of making ultra-thin LT wafer are as follows;
mechanical thinning processes and chemical corrosion.
50pm LT wafer can be obtained by grinding and polis-
hing from a single-crystal 200 um thick wafer. After cut-
ting and chemical corrosion process, the thickness of the
LiTaO, could reach up to 10pum'"7-*’. To enhance the
absorption in terahertz wave, terahertz absorption films
are fabricated on the top of the sensitive element surface
by its corresponding process. Because the pyroelectric
terahertz detector based on LiTaO; is a kind of thermal
detector, the heat conduction is the most important pa-
rameter for the performance. The 10pm LiTaO,layer is
presented in Fig. 1 (a). The sensitive element structure
is shown in Fig. 1(b), from top to bottom individually,
there are terahertz gold black absorb coating/dielectric
layer/ferrite layer/gold black absorb coating/LiTaO,

erystal (1.2 x 1.2 mm’, thickness 10um)/gold black
reflector layer. The electrode structure of sensitive ele-
ments is shown in Fig. 1 (c¢). The encapsulation of tera-
hertz detector is shown in Fig. 1(d). To obtain high per-
formance in THz detection, we employ voltage mode to
drive the sensitive element, couple with a 100 G{) resist-
ance and four low noise JFET. The whole elements and
circuit are assembled in a TOs39 housing as au integrated
device.

We applied all the design parameters to establish
the computational mode of the THz detector with optical,
thermal and electrical properties as shown in Fig. 1(d).
In the simulation, we applied a heat flux of 6.7 x 10"
W/ um’ to radiate the detector. The temperature distribu-
tion map of the sensitive element is shown in Fig.2. We
evaluated the performance from the simulation results.
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Fig. 1 The device structures of a THz detector, (a) the thick-
ness of the LiTaO, crystal, (b)sensitive layer structures, (c)
electrode structure of sensitive elements, and (d)encapsulation
structure of terahertz detector
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The average increasing temperature is about 3. ImK, and
the root mean square (RMS) value of the temperature u-

niformity is less than 1. ImK. The result is good compa-
[2628]

ring with some other detectors
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Fig.2 The temperature changing map at fixed energy
flux of the THz detector simulation result of the complex
films device structures
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Figure 3 shows the roughness of LT wafer before and
after grinding and polishing. It is obvious that the surface
scratches are removed by chemical corrosion ( Fig. 3
(b)).

The biggest challenge in fabricating terahertz detec-
tor based on LiTaO, crystal is highly fragile, which is
particularly intrinsic to ultra-thin (10pwm) LiTaO, wafer.
In all previous fabrications of the micromechanical tera-
hertz detectors with optical readout, the incident THz ra-
diation goes through the solid Si or SiO, substrate™’.
This imposes several limitations on the detector perform-
ance. The most significant limitation is related to thermal
dissipation. We proposed to surmount this limitation by
removing the substrate material underneath the absorbing
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moving ambient radiation. The noise voltage is hundreds
of nano-Volts and can be reduced by increasing the test
frequency. So we can suppose that it is possible to fabri-

2150 10.0 5.0

Fig.3 The roughness of LT wafer (a) before chemical cor-
rosion Ra =35.466 nm, and (b) after chemical corrosion Ra
=1.462 nm
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area of terahertz detector. In order to enhance thermal i-
solation and electric insulation, we chose a ceramic to
chip support the sensitive structure. In addition to provi-
ding an unobstructed optical path for THz radiation, this
design eliminates the shortest pathway for heat transfer
between the absorber and the substrate. Therefore, the
thermal isolation of the terahertz detector can be im-
proved.

2 Results and Discussion

One of the important parameters of THz pyroelectric

crystal material

. [30-32
cient” ]

properties is  pyroelectric  coeffi-
. As the thickness of LT wafer is 10pum, sensi-
tive area is 1.2 x 1.2 mm’, the measured pyroelectric
coefficient is P = 4.7 x 10* C/m*K""", the dielectric
constant is 44 ~ 53, the density is 7. 45 g/cm’, the
roughness is Ra =1.462 nm and refractive index is n, =
2.176. The result meets the design requirement of tera-
hertz detector.

The THz detector was fabricated with former pyroe-
lectric materials and simulated structure as shown in Fig.
1(a) and (b), and bonded with pre-amplifier by two
spun gold before test as shown in Fig. 1 (c¢) and (d).
Because it’ s a direct detection detector, far infrared la-
ser (the FIR molecule CH,OH, the pump line is 9P36,
radiation frequency is 2. 52 THz) acted as teraheriz
source and oscilloscope was used to display the voltage
signal coming from the pre-amplifier. The detecting fre-
quency can be controlled precisely by chopper. The
waveform of response voltage signal at 20Hz frequency
was shown in Fig. 4. The output waveform from oscillo-
scope is shown in Fig. 4 (a), and the output waveform
from data acquisition card is shown in Fig. 4 (b). The
response voltage (Vs) signal and the noise voltage ( Vn)
of terahertz detector shown in Fig. 5 were measured with
lock-in amplifier (SR850) at room temperature after re-

cate high response THz detector based on LiTaO, crystal.
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Fig.4 Output waveform of response voltage signal of THz
detector at 20 Hz chopper frequency (a) output waveform
from oscilloscope, (b) the output waveform from data ac-
quisition card
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The responsivity (R,) can be simply expressed as
the following equation' ™’

R, = (mpAR/G)w[1 + o’ (RC)*17’[1 +
a)Z(H/C)Z:I—I/Z , (1)
where 7) is absorptivity of terahertz absorption layer, p is
pyroelectric coefficient of LiTaO, crystal material, A is
the area of element, R is the effective resistance in the
output circuit of detector and G the effective thermal con-
ductance coupling the detector to a constant temperature
heat sink, w is the operation frequency, C is the electri-
cal and H the thermal capacity of the terahertz detector
element. At low operation frequency, for the bulk tera-
hertz detector, the R, of terahertz detector can be simply
modified as shown below"™

R, 2 mpAR/C,, , (2)
in which, C, is the thermal capacitance and C, =c,Ad
(where ¢, is the volume specific heat, A and d is the ar-

ea and thickness of the terahertz detector element). As
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Fig.5 Response voltage, noise voltage of THz detector at
different chopper frequency, (a) output of the response volt-
age (Vs) signal ,(b)output of the noise voltage ( Vn)
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shown in Eg. 2, the smaller d of LiTaO, crystal in tera-
hertz detector is , the higher responsivity is. The respon-
sivity depends on the thickness of wafer due to that the
thickness affects the thermal capacity of LT wafer '
The scratch would bring damage to the crystal sur-
face, and directly influence the subsequent processing of
crystal, the application of device performance'”*" | the
noise equivalent power value( NEP) , and voltage respon-
sivity R, of the terahertz detector. Chemical corrosion

v

method is used to ensure the uniformity of the polished
wafer to enhance the absorption coefficient of a detector
with low NEP.

With the value of response, noise, and incident en-
ergy, the NEP of terahertz detector can be calculated
with the formula as below :

NEP = (3)
- v/pP ’

The value of response and NEP parameters at different
frequency of terahertz detector are shown in Fig. 6(b).
Obviously, the response for terahertz detector using pyro-
electric material reaches 8.38 x 10*V/W and the lowest
NEP value reaches 1.26 x 10"°W at 20Hz operating fre-
quency by using 2.52 THz radiation. This NEP result is
superior to other room temperature terahertz detec-
tors ***") with NEP about ~10°W. The responsivity of

room temperature terahertz detector is higher than other
terahertz detectors'’. The bolometer is a non-coherent
detector with the lowest NEP of 10"°W/Hz"?, but it op-
erates at very low temperature and its response speed is
[43] :
slow Golay cells are room operation, non-coherent
detectors with a large spectral response (covering 0.1 ~
10 THz) , a low NEP (less than 10" W/Hz"?) and a
slow response speed. A Schottky diode is an extremely
fast, room-temperature THz detector, with a NEP as low
as 10" W/Hz'"?. But its response frequency is normally
less than 2THz, and its responsivity sharply decreases
with increasing THz frequency'*'. Weakly ionized plas-
ma ( WIP) detector is an inexpensive THz detector by u-
sing the WIP in a neon lamp, its response speed is faster
than other THz detector'®’ | but WIP detector responsivi-
ty(44V/W) is lower than terahertz detector using pyroe-
lectric material. The experimental results match the for-
mer heat conduction simulation model, which indicates
that the conversion ratio from temperature changing to
charge of device with LiTaO, crystal is high. From Fig. 6
(a) and 6(b), the NEP parameter of terahertz detector
presents an optimizing value near 20Hz chopper frequen-
cy, and it increases with frequency. The noise voltage of
terahertz detector drops quickly at low frequency, and
then it becomes stable at high frequency. The value of V,
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Fig.6 Responsivity and NEP parameters of THz detector at
different chopper frequency (a) responsivity parameters, (b)
NEP parameters
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slides down promptly at high frequency, therefore there
is an optimizing operating frequency range for those tera-
hertz detectors.

The frequency response graph inset in Fig. 6 (a)
was also used in order to estimate the quality of the THz
detector. The obtained high responsivity (R, ) indicates
that the technique can lead to a terahertz testing system
with improved performance. More improvements could be
achieved by rising the detector’ s terahertz absorption
when an appropriate resonance cavity is embedded into
the absorber. We intend to use the layer with thickness
optimized so that the absorption is maximized in the tera-
hertz wavelength range.

3 Conclusions

The feasibility of preparing a high responsivity tera-
hertz detector based on ultra-thin (10pm) LiTaO, wafer
is presented in this paper. The responsivity could reach
up to 8.38 x 10°V/W. The surface morphology of crystal
slice becomes more flat as the thickness reduced to 10 um
by oxidizing solution etching. The NEP value of terahertz
detector is as low as 1.26 x 10"°W, which is much bet-
ter than a detector with others pyroelectric materials.
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